

Vulcan API docs

	Installation

	Getting started
	Core concepts and definitions

	Technical info
	Data fetching

	Sessions

	Keystore creation

	Account registration

	Basic client usage
	Simple data fetching

	Data fetching - technical info

	Full API documentation
	Client

	Core models

	Common models

	Data models

Installation

You can install vulcan-api using pip

$ pip install vulcan-api

or you can build it yourself

$ git clone https://github.com/kapi2289/vulcan-api.git
$ cd vulcan-api
$ pip install .

Getting started

	Core concepts and definitions

	Technical info
	Data fetching

	Sessions

	Keystore creation

	Account registration

	Basic client usage
	Simple data fetching

	Data fetching - technical info

Core concepts and definitions

In order to use the API, it’s important to understand some concepts
and naming conventions in the API.

	symbol - sometimes referred to as “partition symbol”.
This is a textual grouping symbol representing a group of
e-register instances: a town, a county or a part of them.
The symbol is present in the e-register website URL:

https://uonetplus.vulcan.net.pl/<symbol>

	code - or “school code” - a code representing a single school
or few grouped (in an unit) school buildings. Often in the form
of 001234, sometimes also containing alphabet characters.
Present in the URL:

https://uonetplus.vulcan.net.pl/<symbol>/<code>

	Unit - a group of schools, sharing a similar name. May contain
only one school.

	School - a part of a unit.

	Keystore - login data for an instance of the API. Might
be tied (registered) to multiple accounts.

	Account - an account from a single symbol, containing
one or more students, accessed using a corresponding keystore.

	Student - a person, school attendant.

Technical info

The Vulcan API is asynchronous (using asyncio) and works using
coroutines. All the code presented in this documentation needs to be placed
inside a coroutine block (except imports, obviously).

A sample coroutine block looks as follows:

import asyncio

async def main():
 # asynchronous code goes here

if __name__ == "__main__":
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())

Data fetching

All data getting methods are asynchronous.

There are three return types of those methods:

	object - applies to methods returning a single object (e.g. the currently
selected student, the today’s lucky number, the server date-time)

	list - applies to get_students(). The list is either
read from the server or the in-memory cache.

	AsyncIterator - applies to all other data fetching methods. The returned
iterator may be used like this:

grades = await client.data.get_grades()

with a for loop
async for grade in grades:
 print(grade)

convert to a list
grades = [grade async for grade in grades]
print(grades[0])
for grade in grades:
 print(grade)

Note

You cannot re-use the AsyncIterator (once iterated through). As it is
asynchronous, you also cannot use the next() method on it.

Sessions

As all HTTP requests are also async, the API uses aiohttp’s sessions,
which need to be opened and closed when needed.

Upon creation, the Vulcan object creates a session,
which needs to be closed before the program terminates.

client = Vulcan(keystore, account)
use the client here
await client.close()

It is also possible to use a context manager to handle session opening
and closing automatically.

client = Vulcan(keystore, account)
async with client:
 # use the client here

Warning

Be aware that every with block creates and closes a new session.
As per the aiohttp docs, it is recommended to group multiple requests
to use with a single session, so it’s best not to use a separate with block
for every single request.

Keystore creation

The first step is to create a Keystore, which will be used to access
any account to which it’s registered:

from vulcan import Keystore

keystore = Keystore.create()
or with an explicitly passed device model
keystore = Keystore.create(device_model="Vulcan API")

The keystore is now ready to be registered in exchange for an Account,
but it’s best to save it for later use:

with open("keystore.json", "w") as f:
 # use one of the options below:
 # write a formatted JSON representation
 f.write(keystore.as_json)
 # dump a dictionary as JSON to file (needs `json` import)
 json.dump(keystore.as_dict, f)

A once-saved keystore may be simply loaded back into an API-usable object:

with open("keystore.json") as f:
 # use one of the options below:
 # load from a file-like object
 keystore = Keystore.load(f)
 # load from a JSON string
 keystore = Keystore.load(f.read())
 # load from a dictionary (needs `json` import)
 keystore = Keystore.load(json.load(f))

The keystore is now ready for further usage.

Account registration

It is now necessary to register the previously created Keystore
in the e-register, in order to get access to the Account’s data.

The Token, Symbol and PIN need to be obtained from the Vulcan e-register student/parent
panel (in the “Mobile access/Dostęp mobilny” tab):

from vulcan import Account

account = Account.register(keystore, token, symbol, pin)

Just as for the keystore, it’s recommended to save the account credentials
for later usage:

with open("account.json", "w") as f:
 # use one of the options below:
 # write a formatted JSON representation
 f.write(account.as_json)
 # dump a dictionary as JSON to file (needs `json` import)
 json.dump(account.as_dict, f)

An account may be loaded back as follows:

with open("account.json") as f:
 # use one of the options below:
 # load from a file-like object
 account = Account.load(f)
 # load from a JSON string
 account = Account.load(f.read())
 # load from a dictionary (needs `json` import)
 account = Account.load(json.load(f))

You are now ready to use the API. The keystore and account registration is a one-time step.

Basic client usage

To create the API client:

from vulcan import Vulcan

client = Vulcan(keystore, account)

To select a student:

await client.select_student() # select the first available student
print(client.student) # print the selected student

students = await client.get_students()
client.student = students[1] # select the second student

Simple data fetching

All data is fetched from the VulcanData class,
available as client.data variable.

Note

Read the VulcanData docs to see
all public data fetching methods.

lucky_number = await client.data.get_lucky_number()
print(lucky_number)

Data fetching - technical info

All data getting methods are asynchronous.

There are three return types of those methods:

	object - applies to methods returning a single object (e.g. the currently
selected student, the today’s lucky number, the server date-time)

	list - applies to get_students(). The list is either
read from the server or the in-memory cache.

	AsyncIterator - applies to all other data fetching methods. The returned
iterator may be used like this:

grades = await client.data.get_grades()

with a for loop
async for grade in grades:
 print(grade)

convert to a list
grades = [grade async for grade in grades]
print(grades[0])
for grade in grades:
 print(grade)

Note

You cannot re-use the AsyncIterator (once iterated through). As it is
asynchronous, you also cannot use the next() method on it.

Full API documentation

Client

	
class vulcan.Vulcan(keystore, account, session=None, logging_level: int = None)

	Vulcan API client.

Contains methods for getting/setting the current student and for
setting the logging level. All data is fetched from an instance
of the VulcanData, accessible
using the data variable.

	Variables

	data (VulcanData) – the data client

	
get_students(cached=True) → List[vulcan.model._student.Student]

	Gets students assigned to this account.

	Parameters

	cached (bool) – whether to allow returning the cached list

	Return type

	List[Student]

	
select_student()

	Load a list of students associated with the account.
Set the first available student as default for the API.

	
static set_logging_level(logging_level: int)

	Set the API logging level.

	Parameters

	logging_level (int) – logging level from logging module

	
student

	Gets/sets the currently selected student.

	Return type

	Student

	
class vulcan._data.VulcanData(api: vulcan._api.Api)

	A data client for the API.

Contains methods for getting all data objects, some in
form of a list, others as an object. All the methods
are asynchronous. Additionally, the list getting methods
return an AsyncIterator of the items.

The data client shall not be constructed outside of the main
API class.

	
get_addressbook(**kwargs) → Union[AsyncIterator[vulcan.data._addressbook.Addressbook], List[int]]

	Yields the addressbook.

	Return type

	Union[AsyncIterator[Addressbook], List[int]]

	
get_attendance(last_sync: datetime.datetime = None, deleted=False, date_from=None, date_to=None, **kwargs) → Union[AsyncIterator[vulcan.data._attendance.Attendance], List[int]]

	Fetches attendance from the given date

	Parameters

	
	last_sync (datetime.datetime) – date of the last sync,
gets only the objects updated since this date

	deleted (bool) – whether to only get the deleted item IDs

	date_from (datetime.date) – Date, from which to fetch attendance, if not provided
it’s using the today date (Default value = None)

	date_to (datetime.date) – Date, to which to fetch attendance, if not provided
it’s using the date_from date (Default value = None)

	Return type

	Union[AsyncIterator[Attendance], List[int]]

	
get_changed_lessons(last_sync: datetime.datetime = None, deleted=False, date_from=None, date_to=None, **kwargs) → Union[AsyncIterator[vulcan.data._lesson.ChangedLesson], List[int]]

	Yields the student’s changed lessons.

	Parameters

	
	last_sync (datetime.datetime) – date of the last sync,
gets only the objects updated since this date

	deleted (bool) – whether to only get the deleted item IDs

	date_from (datetime.date) – Date, from which to fetch lessons, if not provided
it’s using the today date (Default value = None)

	date_to (datetime.date) – Date, to which to fetch lessons, if not provided
it’s using the date_from date (Default value = None)

	Return type

	Union[AsyncIterator[ChangedLesson], List[int]]

	
get_exams(last_sync: datetime.datetime = None, deleted=False, **kwargs) → Union[AsyncIterator[vulcan.data._grade.Grade], List[int]]

	Yields the student’s exams.

	Parameters

	
	last_sync (datetime.datetime) – date of the last sync,
gets only the objects updated since this date

	deleted (bool) – whether to only get the deleted item IDs

	Return type

	Union[AsyncIterator[Exam], List[int]]

	
get_grades(last_sync: datetime.datetime = None, deleted=False, **kwargs) → Union[AsyncIterator[vulcan.data._grade.Grade], List[int]]

	Yields the student’s grades.

	Parameters

	
	last_sync (datetime.datetime) – date of the last sync,
gets only the objects updated since this date

	deleted (bool) – whether to only get the deleted item IDs

	Return type

	Union[AsyncIterator[Grade], List[int]]

	
get_homework(last_sync: datetime.datetime = None, deleted=False, **kwargs) → Union[AsyncIterator[vulcan.data._homework.Homework], List[int]]

	Yields the student’s homework.

	Parameters

	
	last_sync (datetime.datetime) – date of the last sync,
gets only the objects updated since this date

	deleted (bool) – whether to only get the deleted item IDs

	Return type

	Union[AsyncIterator[Homework], List[int]]

	
get_lessons(last_sync: datetime.datetime = None, deleted=False, date_from=None, date_to=None, **kwargs) → Union[AsyncIterator[vulcan.data._lesson.Lesson], List[int]]

	Yields the student’s lessons.

	Parameters

	
	last_sync (datetime.datetime) – date of the last sync,
gets only the objects updated since this date

	deleted (bool) – whether to only get the deleted item IDs

	date_from (datetime.date) – Date, from which to fetch lessons, if not provided
it’s using the today date (Default value = None)

	date_to (datetime.date) – Date, to which to fetch lessons, if not provided
it’s using the date_from date (Default value = None)

	Return type

	Union[AsyncIterator[Lesson], List[int]]

	
get_lucky_number(day: datetime.date = None) → vulcan.data._lucky_number.LuckyNumber

	Gets the lucky number for the specified date.

	Parameters

	day (datetime.date) – date of the lucky number to get.
Defaults to None (today).

	Return type

	LuckyNumber

	
get_message_boxes(**kwargs) → AsyncIterator[vulcan.data._messagebox.MessageBox]

	Yields message boxes.

	Return type

	Union[AsyncIterator[MessageBox]

	
get_messages(message_box: str, last_sync: datetime.datetime = None, folder=1, **kwargs) → Union[AsyncIterator[vulcan.data._message.Message], List[int]]

	Yields messages received in the specified message box.

	Parameters

	
	message_box (str) – the MessageBox’s Global Key to get the messages from, can be obtained from get_message_boxes

	last_sync (datetime.datetime) – date of the last sync,
gets only the objects updated since this date

	folder (int) – message folder: 1 - received; 2 - sent; 3 - deleted

	Return type

	Union[AsyncIterator[Message], List[int]]

	
get_time() → vulcan.model._datetime.DateTime

	Gets the current server time.

	Return type

	DateTime

Core models

	
class vulcan.Keystore(certificate, fingerprint, private_key, firebase_token, device_model)

	A keystore containing of:

	a PEM-encoded X509 certificate signed using SHA-256 with RSA algorithm

	SHA-1 fingerprint of the certificate, represented
as lowercase hexadecimal characters

	a PEM-encoded PKCS#8 RSA 2048 private key

Additionally, to use with the Vulcan API the keystore contains:

	a Firebase Cloud Messaging token - to re-use for every request

	a device name string, also needed for API requests

	Variables

	
	certificate (str) – a PEM-encoded certificate

	fingerprint (str) – the certificate’s fingerprint

	private_key (str) – a PEM-encoded RSA 2048 private key

	firebase_token (str) – an FCM token

	device_model (str) – a device model string

	
class vulcan.Account(login_id, user_login, user_name, rest_url)

	An account in the e-register.

	Variables

	
	login_id (int) – the account’s login ID

	user_login (str) – the account’s login name (email/username)

	user_name (str) – probably the same as user_login

	rest_url (str) – the API base URL for the partition symbol

	
class vulcan.model.Serializable

	A base class allowing to (de)serialize objects easily into
appropriate class variables.

	
as_dict

	Serialize the object as a dictionary.

	Return type

	dict

	
as_json

	Serialize the object as a JSON string.

	Return type

	str

	
classmethod load(data) → T

	Deserialize provided data into an instance of cls.

The data parameter may be:

	a JSON string

	a dictionary

	a handle to a file containing a JSON string

	Parameters

	data – the data to deserialize

Common models

	
class vulcan.model.Student(class_, symbol, symbol_code, pupil, unit, school, periods)

	A student object, along with his school, class and period information

	Variables

	
	class_ (str) – student class

	symbol (str) – the “partition” symbol - can be a town or county name

	symbol_code (str) – the school unit code - often a 6 digit number

	pupil (Pupil) – contains the student’s IDs,
names and email

	unit (Unit) – info about the school unit
(e.g. several school buildings)

	school (School) – info about the school
(a single building of the unit)

	periods (List[Period]) – a list of
the student’s school year periods

	
current_period

	Gets the currently ongoing period of the student.

	Return type

	Period

	
full_name

	Gets the student’s full name in “FirstName SecondName LastName” format or “FirstName LastName” format if
there is no second name.

	Return type

	str

	
classmethod get(api, **kwargs) → List[vulcan.model._student.Student]

	
	Return type

	List[Student]

	
period_by_id(period_id: int) → vulcan.model._period.Period

	Gets a period matching the given period ID.

	Parameters

	period_id (int) – the period ID to look for

	Return type

	Period

	
class vulcan.model.DateTime(timestamp, date, time)

	A date-time object used for representing points in time.

	Variables

	
	timestamp (int) – number of millis since the Unix epoch

	date (datetime.date) – a date object

	time (datetime.time) – a time object

	
date_time

	Combine the date and time of this object.

	Return type

	datetime.datetime

	
classmethod get(api, **kwargs) → vulcan.model._datetime.DateTime

	
	Return type

	DateTime

	
class vulcan.model.Period(id, level, number, current: bool, last: bool, start, end)

	A school year period.

	Variables

	
	id (int) – the period ID

	level (int) – a grade/level number

	number (int) – number of the period in the school year

	current (bool) – whether the period is currently ongoing

	last (bool) – whether the period is last in the school year

	start (DateTime) – the period start datetime

	end (DateTime) – the period end datetime

	
class vulcan.model.Pupil(id, login_id, first_name, last_name, gender, second_name=None, login_value=None)

	A class containing the student’s data.

	Variables

	
	id (int) – pupil’s ID

	login_id (int) – pupil’s account login ID

	login_value (str) – pupil’s account login name (email/username)

	first_name (str) – student’s first name

	second_name (str) – student’s second name, optional

	last_name (str) – student’s last name / surname

	gender (Gender) – student’s gender

	
class vulcan.model.School(id, name, short_name, address=None)

	A single school building.

	Variables

	
	id (int) – school ID

	name (str) – school full name

	short_name (str) – school short name

	address (str) – school address (location)

	
class vulcan.model.Subject(id, key, name, code, position)

	A school subject.

	Variables

	
	id (int) – subject ID

	key (str) – subject’s key (UUID)

	name (str) – subject’s name

	code (str) – subject’s code (e.g. short name or abbreviation)

	position (int) – unknown, yet

	
class vulcan.model.Teacher(id, name, surname, display_name)

	A teacher or other school employee.

	Variables

	
	id (int) – teacher ID

	name (str) – teacher’s name

	surname (str) – teacher’s surname

	display_name (str) – teacher’s display name

	
class vulcan.model.TeamClass(id, key, display_name, symbol)

	A school class.

	Variables

	
	id (int) – class ID

	key (str) – class’s key (UUID)

	display_name (str) – class’s display name

	symbol (str) – class’s symbol (e.g. a letter after the level, “C” in “6C”)

	
class vulcan.model.TeamVirtual(id, key, shortcut, name, part_type)

	A virtual team, i.e. a part of the school class. Often called
a “distribution” of the class.

	Variables

	
	id (int) – team ID

	key (str) – team’s key (UUID)

	shortcut (str) – team’s short name

	name (str) – team’s name

	part_type (str) – type of the distribution

	
class vulcan.model.TimeSlot(id, from_, to, displayed_time, position)

	Lesson time (start-end range)

	Variables

	
	id (int) – lesson time ID

	from_ (datetime.time) – lesson start time

	to (datetime.time) – lesson end time

	displayed_time (str) – lesson’s displayed time

	position (int) – lesson position

	
class vulcan.model.Unit(id, code, name, short_name, display_name, rest_url, address=None)

	A group of one or more schools.

	Variables

	
	id (int) – unit ID

	code (str) – unit code (school code) - often 6 digits

	name (str) – unit full name

	short_name (str) – unit short name

	display_name (str) – unit display name

	address (str) – unit address (location)

	rest_url (str) – unit data’s API base URL

Data models

	
class vulcan.data.Addressbook(id, login_id, first_name, last_name, initials, roles)

	An address book.

	Variables

	
	id (str) – recipient id

	login_id (str) – recipient login id

	first_name (str) – recipient’s first name

	last_name (str) – recipient’s last name

	initials (str) – recipient’s initials

	roles (list[Role]) – recipient’s role (eg. Teacher)

	
classmethod get(api, **kwargs) → Union[AsyncIterator[vulcan.data._addressbook.Addressbook], List[int]]

	
	Return type

	Union[AsyncIterator[Addressbook], List[int]]

	
class vulcan.data.Role(role_name, role_order, address_name, address_hash, first_name, last_name, initials, unit_symbol=None, constituent_unit_symbol=None, class_symbol=None)

	A role of addressee.

	Variables

	
	role_name (str) – role name

	role_order (int) – role order

	address_name (str) – address name

	address_hash (str) – address hash

	first_name (str) – recipient’s first name

	last_name (str) – recipient’s last name

	initials (str) – recipient’s initials

	unit_symbol (str) – recipient’s unit_symbol

	constituent_unit_symbol (str) – recipient’s constituent unit symbol

	class_symbol (str) – recipient’s class symbol

	
class vulcan.data.Attendance(lesson_id, id, lesson_number, global_key, lesson_class_id, lesson_class_global_key, calculate_presence: bool, replacement: bool, subject=None, topic=None, teacher=None, second_teacher=None, main_teacher=None, team_class=None, class_alias=None, date=None, time=None, date_modified=None, aux_presence_id=None, justification_status=None, presence_type=None, note=None, public_resources=None, remote_resources=None, group=None, visible=None)

	Attendance.

	Variables

	
	lesson_id (int) – lesson ID

	id (int) – attendance ID

	lesson_number (int) – lesson number

	global_key (str) – attendance global key

	lesson_class_id (int) – lesson class ID

	global_key – lesson class global key

	calculate_presence (bool) – does it count for absences

	replacement (bool) – os it replaced

	subject (Subject) – subject of the lesson

	topic (str) – topic of the lesson

	teacher (Teacher) – teacher of the lesson

	second_teacher (Teacher) – second teacher of the lesson

	main_teacher (Teacher) – pupil main teacher

	team_class (TeamClass) – the class that had lesson

	class_alias (str) – class short name

	date (DateTime) – lesson’s date

	time (TimeSlot) – lesson’s time

	date_modified (DateTime) – attendance modification date, if not modified it is created date

	id – aux presence ID

	justification_status (str) – attendance justification status

	presence_type (PresenceType) – presence type

	note (str) – attendance note

	public_resources (str) – attendance public resources

	remote_resources (str) – attendance remote resources

	group (TeamVirtual) – group, that has the lesson

	visible (bool) – attendance visibility

	
classmethod get(api, last_sync, deleted, date_from, date_to, **kwargs) → Union[AsyncIterator[vulcan.data._attendance.Attendance], List[int]]

	
	Return type

	Union[AsyncIterator[Attendance], List[int]]

	
class vulcan.data.PresenceType(id, name, symbol, category_id, category_name, position, presence: bool, absence: bool, exemption: bool, late: bool, justified: bool, deleted: bool)

	Presence type

	Variables

	
	id (int) – attendance ID

	name (str) – attendance name

	symbol (str) – attendance symbol

	category_id (int) – attendance category ID

	category_name (str) – attendance category name

	position (int) – attendance position

	presence (bool) – presence on lesson

	absence (bool) – absence on lesson

	exemption (bool) – exemption from lesson

	late (bool) – is late for lesson

	justified (bool) – justified absence

	deleted (bool) – whether the entry is deleted

	
class vulcan.data.Exam(id, key, type, topic, date_created, date_modified, deadline, creator, subject, team_class=None, team_virtual=None)

	An exam or short quiz.

	Variables

	
	id (int) – exam’s ID

	key (str) – exam’s key (UUID)

	type (str) – exam’s type

	topic (str) – exam’s topic

	date_created (DateTime) – exam’s creation date

	date_modified (DateTime) – exam’s modification date
(may be the same as date_created if it was never modified)

	deadline (DateTime) – exam’s date and time

	creator (Teacher) – the teacher who added
the exam

	subject (Subject) – the exam’s subject

	team_class (TeamClass) – the class taking the exam

	team_virtual (TeamVirtual) – the class distribution
taking the exam, optional

	
classmethod get(api, last_sync, deleted, **kwargs) → Union[AsyncIterator[vulcan.data._exam.Exam], List[int]]

	
	Return type

	Union[AsyncIterator[Exam], List[int]]

	
class vulcan.data.Homework(id, key, homework_id, content, date_created, creator, subject, attachments, is_answer_required: vulcan.model._subject.Subject, deadline, answer_deadline=None, answer_date=None)

	A homework.

	Variables

	
	id (int) – homework’s external ID

	key (str) – homework’s key (UUID)

	homework_id (int) – homework’s internal ID

	content (str) – homework’s content

	date_created (DateTime) – homework’s creation date

	creator (Teacher) – the teacher who added
the homework

	subject (Subject) – the homework’s subject

	attachments (List[Attachment]) – attachments added to homework

	is_answer_required (bool) – Is an answer required

	deadline (DateTime) – homework’s date and time

	answer_deadline (DateTime) – homework’s answer deadline

	answer_date (DateTime) – homework’s answer date and time

	
classmethod get(api, last_sync, deleted, **kwargs) → Union[AsyncIterator[vulcan.data._homework.Homework], List[int]]

	
	Return type

	Union[AsyncIterator[Homework], List[int]]

	
class vulcan.data.Lesson(id=None, date=None, time=None, room=None, teacher=None, second_teacher=None, subject=None, event=None, changes=None, team_class=None, pupil_alias=None, group=None, visible: bool = None)

	A lesson.

	Variables

	
	id (int) – lesson’s ID

	date (DateTime) – lesson’s date

	time (TimeSlot) – lesson’s time

	room (LessonRoom) – classroom, in which is the lesson

	teacher (Teacher) – teacher of the lesson

	second_teacher (Teacher) – second teacher of the lesson

	subject (Subject) – subject on the lesson

	event (str) – an event happening during this lesson

	changes (LessonChanges) – lesson changes

	team_class (TeamClass) – the class that has the lesson

	pupil_alias (str) – pupil alias

	group (TeamVirtual) – group, that has the lesson

	visible (bool) – lesson visibility (whether the timetable applies to the given student)

	
classmethod get(api, last_sync, deleted, date_from, date_to, **kwargs) → Union[AsyncIterator[vulcan.data._lesson.Lesson], List[int]]

	
	Return type

	Union[AsyncIterator[Lesson], List[int]]

	
class vulcan.data.ChangedLesson(id=None, unit_id=None, schedule_id=None, lesson_date=None, note=None, reason=None, time=None, room=None, teacher=None, second_teacher=None, subject=None, event=None, changes=None, change_date=None, team_class=None, group=None)

	Changed lesson.

	Variables

	
	id (int) – changed lesson’s ID

	unit_id (int) – unit ID

	schedule_id (int) – normal lesson’s ID

	lesson_date (DateTime) – lesson’s date

	change_date (DateTime) – change date

	time (TimeSlot) – lesson’s time

	note (str) – change note

	reason (str) – change reason

	room (LessonRoom) – classroom, in which is the lesson

	teacher (Teacher) – teacher of the lesson

	second_teacher (Teacher) – second teacher of the lesson

	subject (Subject) – subject on the lesson

	event (str) – an event happening during this lesson

	changes (LessonChanges) – lesson changes

	team_class (TeamClass) – the class that has the lesson

	group (TeamVirtual) – group, that has the lesson

	
classmethod get(api, last_sync, deleted, date_from, date_to, **kwargs) → Union[AsyncIterator[vulcan.data._lesson.Lesson], List[int]]

	
	Return type

	Union[AsyncIterator[ChangeLesson], List[int]]

	
class vulcan.data.LessonChanges(id, type, separation: bool)

	Lesson changes

	Variables

	
	id (int) – lesson change ID

	type (int) – lesson change type

	code (bool) – team separation

	
class vulcan.data.LessonRoom(id, code)

	Lesson room

	Variables

	
	id (int) – lesson room ID

	code (str) – classroom code

	
class vulcan.data.Grade(id, key, pupil_id, content_raw, content, date_created, date_modified, teacher_created, teacher_modified, column, value=None, comment=None, numerator=None, denominator=None)

	A grade.

	Variables

	
	id (int) – grade’s ID

	key (str) – grade’s key (UUID)

	pupil_id (int) – the related pupil’s ID

	content_raw (str) – grade’s content (with comment)

	content (str) – grade’s content (without comment)

	date_created (DateTime) – grade’s creation date

	date_modified (DateTime) – grade’s modification date
(may be the same as date_created if it was never modified)

	teacher_created (Teacher) – the teacher who added
the grade

	teacher_modified (Teacher) – the teacher who modified
the grade

	column (GradeColumn) – grade’s column

	value (float) – grade’s value, may be None if 0.0

	comment (str) – grade’s comment, visible in parentheses in content_raw

	numerator (float) – for point grades: the numerator value

	denominator (float) – for point grades: the denominator value

	
classmethod get(api, last_sync, deleted, **kwargs) → Union[AsyncIterator[vulcan.data._grade.Grade], List[int]]

	
	Return type

	Union[AsyncIterator[Grade], List[int]]

	
class vulcan.data.GradeColumn(id, key, period_id, name, code, number, weight, subject, group=None, category=None, period=None)

	A grade column. Represents a topic which a student
may get a grade from (e.g. a single exam, short test, homework).

	Variables

	
	id (int) – grade column’s ID

	key (str) – grade column’s key (UUID)

	period_id (int) – ID of the period when the grade is given

	name (str) – grade column’s name (description)

	code (str) – grade column’s code (e.g. short name or abbreviation)

	group (str) – unknown, yet

	number (int) – unknown, yet

	weight (int) – weight of this column’s grades

	subject (Subject) – the subject from which
grades in this column are given

	category (GradeCategory) – category (base type)
of grades in this column

	period (Period) – a resolved period of this grade

	
class vulcan.data.GradeCategory(id, name, code)

	A base grade category. Represents a generic type, like an exam, a short test,
a homework or other (“current”) grades.

	Variables

	
	id (int) – grade category’s ID

	name (str) – grade category’s name

	code (str) – grade category’s code (e.g. short name or abbreviation)

	
class vulcan.data.Message(id, global_key, thread_key, subject, content, sent_date, status, sender, receivers, attachments, read_date=None)

	A message.

	Variables

	
	id (str) – Message id

	global_key (str) – Message Global Key

	thread_key (str) – Message thread key

	subject (str) – Subject of the message

	content (str) – Message content

	sent_date (DateTime) – Date with time when the message was sent

	read_date (DateTime) – Date with time when the message was read

	status (int) – Message status

	sender (Address) – Sender of the message

	receivers (List[Address]) – Receiver of the message

	attachments (List[Attachment]) – attachments added to message

	
classmethod get(api, message_box, last_sync, folder, **kwargs) → Union[AsyncIterator[vulcan.data._message.Message], List[int]]

	
	Return type

	Union[AsyncIterator[Message], List[int]]

	
class vulcan.data.Address(global_key, name, has_read=None)

	An address - “descriptor” used in the system containing the user’s Global Key, his names and a information whether the user has read the message.

	Variables

	
	global_key (str) – Global Key

	name (str) – address name

	has_read (int) – whether the user has read the message

	
class vulcan.data.LuckyNumber(date, number)

	A lucky number for the specified date.

	Variables

	
	date (datetime.date) – lucky number date

	number (int) – the lucky number

	
classmethod get(api, day: _CountingAttr(counter=290, _default=NOTHING, repr=True, eq=True, order=True, hash=None, init=True, on_setattr=None, alias=None, metadata={'formatter': '%Y-%m-%d', 'key': 'Day'}), **kwargs) → vulcan.data._lucky_number.LuckyNumber

	
	Return type

	LuckyNumber

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | K
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	Account (class in vulcan)

 	Address (class in vulcan.data)

 	Addressbook (class in vulcan.data)

 	
 	as_dict (vulcan.model.Serializable attribute)

 	as_json (vulcan.model.Serializable attribute)

 	Attendance (class in vulcan.data)

C

 	
 	ChangedLesson (class in vulcan.data)

 	
 	current_period (vulcan.model.Student attribute)

D

 	
 	date_time (vulcan.model.DateTime attribute)

 	
 	DateTime (class in vulcan.model)

E

 	
 	Exam (class in vulcan.data)

F

 	
 	full_name (vulcan.model.Student attribute)

G

 	
 	get() (vulcan.data.Addressbook class method)

 	(vulcan.data.Attendance class method)

 	(vulcan.data.ChangedLesson class method)

 	(vulcan.data.Exam class method)

 	(vulcan.data.Grade class method)

 	(vulcan.data.Homework class method)

 	(vulcan.data.Lesson class method)

 	(vulcan.data.LuckyNumber class method)

 	(vulcan.data.Message class method)

 	(vulcan.model.DateTime class method)

 	(vulcan.model.Student class method)

 	get_addressbook() (vulcan._data.VulcanData method)

 	get_attendance() (vulcan._data.VulcanData method)

 	
 	get_changed_lessons() (vulcan._data.VulcanData method)

 	get_exams() (vulcan._data.VulcanData method)

 	get_grades() (vulcan._data.VulcanData method)

 	get_homework() (vulcan._data.VulcanData method)

 	get_lessons() (vulcan._data.VulcanData method)

 	get_lucky_number() (vulcan._data.VulcanData method)

 	get_message_boxes() (vulcan._data.VulcanData method)

 	get_messages() (vulcan._data.VulcanData method)

 	get_students() (vulcan.Vulcan method)

 	get_time() (vulcan._data.VulcanData method)

 	Grade (class in vulcan.data)

 	GradeCategory (class in vulcan.data)

 	GradeColumn (class in vulcan.data)

H

 	
 	Homework (class in vulcan.data)

K

 	
 	Keystore (class in vulcan)

L

 	
 	Lesson (class in vulcan.data)

 	LessonChanges (class in vulcan.data)

 	
 	LessonRoom (class in vulcan.data)

 	load() (vulcan.model.Serializable class method)

 	LuckyNumber (class in vulcan.data)

M

 	
 	Message (class in vulcan.data)

P

 	
 	Period (class in vulcan.model)

 	period_by_id() (vulcan.model.Student method)

 	
 	PresenceType (class in vulcan.data)

 	Pupil (class in vulcan.model)

R

 	
 	Role (class in vulcan.data)

S

 	
 	School (class in vulcan.model)

 	select_student() (vulcan.Vulcan method)

 	Serializable (class in vulcan.model)

 	
 	set_logging_level() (vulcan.Vulcan static method)

 	Student (class in vulcan.model)

 	student (vulcan.Vulcan attribute)

 	Subject (class in vulcan.model)

T

 	
 	Teacher (class in vulcan.model)

 	TeamClass (class in vulcan.model)

 	
 	TeamVirtual (class in vulcan.model)

 	TimeSlot (class in vulcan.model)

U

 	
 	Unit (class in vulcan.model)

V

 	
 	Vulcan (class in vulcan)

 	
 	VulcanData (class in vulcan._data)

 All data getting methods are asynchronous.

There are three return types of those methods:

	object - applies to methods returning a single object (e.g. the currently
selected student, the today’s lucky number, the server date-time)

	list - applies to get_students(). The list is either
read from the server or the in-memory cache.

	AsyncIterator - applies to all other data fetching methods. The returned
iterator may be used like this:

grades = await client.data.get_grades()

with a for loop
async for grade in grades:
 print(grade)

convert to a list
grades = [grade async for grade in grades]
print(grades[0])
for grade in grades:
 print(grade)

Note

You cannot re-use the AsyncIterator (once iterated through). As it is
asynchronous, you also cannot use the next() method on it.

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/registered.png
Urzadzenie: Vulcan API (Python 3.6.7)

Data rejestracji: 01.12.2018 godz: 22:29:03

_static/minus.png

_static/plus.png

_static/registration1.png
Rejestracja nowego urzadzenia

Kiliknii ponizszy guzik, aby zarejestrowaé nowe urzadzenie mobilne za pomoca kodu QR.

_static/registration2.png
pomoc:

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Vulcan API docs

 		
 Installation

 		
 Getting started

 		
 Core concepts and definitions

 		
 Technical info

 		
 Data fetching

 		
 Sessions

 		
 Keystore creation

 		
 Account registration

 		
 Basic client usage

 		
 Simple data fetching

 		
 Data fetching - technical info

 		
 Full API documentation

 		
 Client

 		
 Core models

 		
 Common models

 		
 Data models

_static/up.png

